EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair
نویسندگان
چکیده
Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5' end resection near the fork junction, which permits 3' single strand invasion of a homologous template for fork restart. This 5' end resection also prevents classical non-homologous end-joining (cNHEJ), a competing pathway for DNA double-strand break (DSB) repair. Unopposed NHEJ can cause genome instability during replication stress by abnormally fusing free double strand ends that occur as unstable replication fork repair intermediates. We show here that the previously uncharacterized Exonuclease/Endonuclease/Phosphatase Domain-1 (EEPD1) protein is required for initiating repair and restart of stalled forks. EEPD1 is recruited to stalled forks, enhances 5' DNA end resection, and promotes restart of stalled forks. Interestingly, EEPD1 directs DSB repair away from cNHEJ, and also away from MMEJ, which requires limited end resection for initiation. EEPD1 is also required for proper ATR and CHK1 phosphorylation, and formation of gamma-H2AX, RAD51 and phospho-RPA32 foci. Consistent with a direct role in stalled replication fork cleavage, EEPD1 is a 5' overhang nuclease in an obligate complex with the end resection nuclease Exo1 and BLM. EEPD1 depletion causes nuclear and cytogenetic defects, which are made worse by replication stress. Depleting 53BP1, which slows cNHEJ, fully rescues the nuclear and cytogenetic abnormalities seen with EEPD1 depletion. These data demonstrate that genome stability during replication stress is maintained by EEPD1, which initiates HR and inhibits cNHEJ and MMEJ.
منابع مشابه
The homologous recombination component EEPD1 is required for genome stability in response to developmental stress of vertebrate embryogenesis
Stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR), initiated by nuclease cleavage of branched structures at stalled forks. We previously reported that the 5' nuclease EEPD1 is recruited to stressed replication forks, where it plays critical early roles in HR initiation by promoting fork cleavage and end resection. HR repair of stressed r...
متن کاملEndonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks*
Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5' end resection, mediated by exonuclease comple...
متن کاملEEPD1: Breaking and Rescuing the Replication Fork
The faithful duplication of an entire genome is a complex affair requiring the coordinated action of the DNA replisome to unwind and synthesize DNA at replication forks. Unfortunately, exposure to chemicals or radiation can damage DNA strands, and this damage can stall DNA replication forks, resulting in genome instability, tumorigenesis, or cell death. To rescue stalled replication forks, cell...
متن کاملCDK1 phosphorylates WRN at collapsed replication forks
Regulation of end-processing is critical for accurate repair and to switch between homologous recombination (HR) and non-homologous end joining (NHEJ). End resection is a two-stage process but very little is known about regulation of the long-range resection, especially in humans. WRN participates in one of the two alternative long-range resection pathways mediated by DNA2 or EXO1. Here we demo...
متن کاملHomologous recombination in Archaea: new Holliday junction helicases.
Homologous recombination (HR) maintains genome stability by promoting high fidelity DNA repair. Several recent reports have established that the primary function of HR enzymes is to underpin DNA replication, resetting forks that are blocked or collapsed at sites of DNA damage remote from replication origins. These functions are crucial to ensuring that genomes are transmitted successfully into ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2015